Week 6 (Midterm Review)

MATH 33A
TA: Jerry Luo
jerryluo8@math.ucla.edu
Website: math.ucla.edu/~jerryluo8
Office Hours: Thursday 1PM-2PM, MS 2344
SMC hours: Tuesday 1-2PM, MS 3974

1. Let $v_{1}=\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right]$ and $v_{2}=\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$.
(a) Find the matrix representation of a linear transformation such that $\operatorname{ker}(T)=$ $\operatorname{span}\left\{v_{1}, v_{2}\right\}$.
(b) Find the matrix representation of a linear transformation such that $\operatorname{Im}(T)=$ $\operatorname{span}\left\{v_{1}, v_{2}\right\}$.
2. Let $v=\left[\begin{array}{l}3 \\ 4\end{array}\right]$.
(a) Find the matrix representation of the projection onto v (ie. $T(x)=\operatorname{Proj}_{v}(x)$).
(b) Find the matrix representation of the reflection about v (ie. $T(x)=\operatorname{Refl} l_{v}(x)$).
(c) Are any of these invertible? If so, compute their inverse.
3. Invert the following matrix

$$
\left[\begin{array}{lll}
3 & 5 & 9 \\
2 & 3 & 7 \\
1 & 3 & 3
\end{array}\right]
$$

4. Suppose $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a linear transformation such that $T\left(\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}2 \\ 3 \\ 5\end{array}\right], T\left(\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right)=$ $\left[\begin{array}{l}5 \\ 1 \\ 2\end{array}\right]$ and $T\left(\left[\begin{array}{l}0 \\ 3 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 3 \\ 3\end{array}\right]$. Find the matrix representation of T. Is T invertible? If so,
compute its inverse.
